
 

 

  

Northern University, Nowshera 

 

Spring 2024 

Classes and Objects 
Week # 05 - Lecture 09 - 10 

 

 

   

 

 



 

AJ/Handout 09 -10 & Week-05                         Object Oriented Programming using Java (ECS-122) 

 

2  

 

 

Learning Objectives: 

1. Objects Oriented Programming 

2. Core Concepts of Object Oriented Programming 

3. Class and Object 

4. Access Specifiers 

 

 

 

 

  



 

AJ/Handout 09 -10 & Week-05                         Object Oriented Programming using Java (ECS-122) 

 

3  

 

1. Object Oriented Programming (OOPS)? 

Object Oriented Programming is a programming concept that works on the principle 

that objects are the most important part of your program. It allows users create the 

objects that they want and then create methods to handle those objects. Manipulating 

these objects to get results is the goal of Object Oriented Programming. 

Object Oriented Programming popularly known as OOP, is used in a modern 

programming language like Java.  

 

 

2. Core concepts of OOP: 

1. Class 

The class is a group of similar entities. It is only a logical component and not the 

physical entity. For example, if you had a class called “Expensive Cars” it could have 

objects like Mercedes, BMW, Toyota, etc. Its properties (data) can be price or speed 

of these cars. While the methods may be performed with these cars are driving, 

reverse, braking etc. 



 

AJ/Handout 09 -10 & Week-05                         Object Oriented Programming using Java (ECS-122) 

 

4  

 

2. Object 

An object can be defined as an instance of a class, and there can be multiple 

instances of a class in a program. An Object contains both the data and the function, 

which operates on the data. For example - chair, bike, marker, pen, table, car, etc. 

3. Inheritance 

Inheritance is an OOPS concept in which one object acquires the properties and 

behaviors of the parent object. It’s creating a parent-child relationship between two 

classes. It offers robust and natural mechanism for organizing and structure of any 

software. 

4. Polymorphism 

Polymorphism refers to the ability of a variable, object or function to take on 

multiple forms. For example, in English, the verb run has a different meaning if you 

use it with a laptop, a foot race, and business. Here, we understand the meaning 

of run based on the other words used along with it. The same also applied to 

Polymorphism. 

5. Abstraction 

An abstraction is an act of representing essential features without including 

background details. It is a technique of creating a new data type that is suited for a 

specific application. For example, while driving a car, you do not have to be 

concerned with its internal working. Here you just need to concern about parts like 

steering wheel, Gears, accelerator, etc. 

6. Encapsulation 

Encapsulation is an OOP technique of wrapping the data and code. In this OOPS 

concept, the variables of a class are always hidden from other classes. It can only be 

accessed using the methods of their current class. For example - in school, a student 

cannot exist without a class. 

 



 

AJ/Handout 09 -10 & Week-05                         Object Oriented Programming using Java (ECS-122) 

 

5  

 

7. Association 

Association is a relationship between two objects. It defines the diversity between 

objects. In this OOP concept, all objects have their separate lifecycle, and there is no 

owner. For example, many students can associate with one teacher while one 

student can also associate with multiple teachers. 

8. Aggregation 

In this technique, all objects have their separate lifecycle. However, there is 

ownership such that child object can’t belong to another parent object. For example 

consider class/objects department and teacher. Here, a single teacher can’t belong 

to multiple departments, but even if we delete the department, the teacher object 

will never be destroyed. 

9. Composition 

A composition is a specialized form of Aggregation. It is also called "death" 

relationship. Child objects do not have their lifecycle so when parent object deletes 

all child object will also delete automatically. For that, let’s take an example of 

House and rooms. Any house can have several rooms. One room can’t become part 

of two different houses. So, if you delete the house room will also be deleted. 

 

3. Advantages of OOPS: 

 OOP offers easy to understand and a clear modular structure for programs. 

 Objects created for Object-Oriented Programs can be reused in other programs. 

Thus it saves significant development cost. 

 Large programs are difficult to write, but if the development and designing team 

follow OOPS concept then they can better design with minimum flaws. 

 It also enhances program modularity because every object exists independently. 

 

 



 

AJ/Handout 09 -10 & Week-05                         Object Oriented Programming using Java (ECS-122) 

 

6  

 

4. Class and Objects 

Java is an object-oriented programming (OOP) language. In this lecture, you'll be 

introduced to OOP and how you can create custom class and objects in your Java 

program. 

Java is an object-oriented programming language. It allows you to divide complex problems 

into smaller sets by creating objects. 

These objects share two characteristics:  

1. State 

2. Behavior 

Let's take few examples: 

1. Lamp is an object 

 It can be in on or off state. 

 You can turn on and turn off lamp (behavior). 

2. Bicycle is an object 

 It has current gear, two wheels, number of gear etc. states. 

 It has braking, accelerating, changing gears etc. behavior. 

 

4.1 Java Class 

Before you create objects in Java, you need to define a class. A class is a blueprint for the 

object. We can think of class as a sketch (prototype) of a house. It contains all the details 

about the floors, doors, windows etc. Based on these descriptions we build the house. 

House is the object. 



 

AJ/Handout 09 -10 & Week-05                         Object Oriented Programming using Java (ECS-122) 

 

7  

 

Since, many houses can be made from the same description, we can create many objects 

from a class. 

4.1.1 How to define a class in Java? 

Here's how a class is defined in Java: 

1. class ClassName { 

2.    // variables 

3.    // methods 

4. } 

Here's an example: 

1. class Lamp { 

2.  

3.   // instance variable 

4.   private boolean isOn; 

5.  

6.   // method 

7.   public void turnOn() { 

8.     isOn = true; 

9.   } 

10.  

11.   // method 

12.   public void turnOff() { 

13.    isOn = false; 

14.   } 

15. } 

 



 

AJ/Handout 09 -10 & Week-05                         Object Oriented Programming using Java (ECS-122) 

 

8  

 

Here, we defined a class named Lamp. The class has one instance variable (variable defined 

inside class) isOn and two methods turnOn() and turnOff(). These variables and methods 

defined within a class are called members of the class. 

 

Notice two keywords, private and public in the above program. These are access modifiers 

which will be discussed in detail later. For now, just remember: 

 The private keyword makes instance variables and methods private which can be 

accessed only from inside the same class. 

 The public keyword makes instance variables and methods public which can be 

accessed from outside of the class. 

In the above program, isOn variable is private whereas turnOn() and turnOff() methods 

are public. 

If you try to access private members from outside of the class, compiler throws error. 

 

4.2. Java Objects 

When class is defined, only the specification for the object is defined; no memory or storage 

is allocated. 

To access members defined within the class, you need to create objects. Let's create objects 

of Lamp class. 

 
1. class Lamp { 

2.   boolean isOn; 

3.  

4.   void turnOn() { 

5.     isOn = true; 

6.   } 

7.  

8.   void turnOff() { 

9.    isOn = false; 

10.   } 

11. } 



 

AJ/Handout 09 -10 & Week-05                         Object Oriented Programming using Java (ECS-122) 

 

9  

 

12.  

13. class Main { 

14. public static void main(String[] args) { 

15.    Lamp l1 = new Lamp(); // create l1 object of Lamp class 

16.    Lamp l2 = new Lamp(); // create l2 object of Lamp class 

17.   } 

18. } 

This program creates two objects l1 and l2 of class Lamp. 

 

5. How to access members? 

You can access members (call methods and access instance variables) by using . operator. 

For example, 

l1.turnOn(); 

This statement calls turnOn() method inside Lamp class for l1 object. 

We have mentioned word method quite a few times. You will learn about Java methods in 

detail in the next chapter. Here's what you need to know for now: 

When you call the method using the above statement, all statements within the body 

of turnOn() method are executed. Then, the control of program jumps back to the statement 

following l1.turnOn();  



 

AJ/Handout 09 -10 & Week-05                         Object Oriented Programming using Java (ECS-122) 

 

10  

 

 

 

Similarly, the instance variable can be accessed as: 

l2.isOn = false; 

It is important to note that, the private members can be accessed only from inside the class. 

If the code  l2.isOn = false; lies within the main()  method (outside of the Lamp class), compiler 

will show error. 

 

Example: Java Class and Objects 

 
1. class Lamp { 

2.   boolean isOn; 

3.  

4.   void turnOn() { 



 

AJ/Handout 09 -10 & Week-05                         Object Oriented Programming using Java (ECS-122) 

 

11  

 

5.     isOn = true; 

6.   } 

7.  

8.   void turnOff() { 

9.    isOn = false; 

10.   } 

11.    

12.   void displayLightStatus() { 

13.       

14.      System.out.println("Light on? " + isOn); 

15.   } 

16. } 

17.  

18.  

19. class ClassObjectsExample { 

20. public static void main(String[] args) { 

21.     

22.    Lamp l1 = new Lamp(), l2 = new Lamp(); 

23.     

24.    l1.turnOn(); 

25.    l2.turnOff(); 

26.     

27.    l1.displayLightStatus(); 

28.    l2.displayLightStatus(); 

29.   } 

30. } 

When you run the program, the output will be: 

Light on? true 

Light on? false 



 

AJ/Handout 09 -10 & Week-05                         Object Oriented Programming using Java (ECS-122) 

 

12  

 

In the above program 

 Lamp class is created. 

 The class has an instance variable isOn and three 

methods turnOn(), turnOff() and displayLightStatus(). 

 Two objects l1 and l2 of Lamp class are created in the main() function. 

 Here, turnOn() method is called using l1 object: l1.turnOn(); 

 This method sets isOn instance variable of l1 object to true. 

 And, turnOff() method is called using l2 object: l2.turnOff(); 

 This method sets isOff instance variable of l2 object to false. 

 Finally, l1.displayLightStatus(); statement displays Light on? true because isOn variable 

holds true for l1 object. 

 And, l2.displayLightStatus(); statement displays Light on?  false because isOn variable 

holds false for l2 object 

 Note, variables defined within a class are called instance variable for a reason. 

 When an object is initialized, it's called an instance. Each instance contains its own 

copy of these variables. For example, isOn variable for objects l1 and l2 are different.  

 

 

 

 

 

 

 

 

 

 

 



 

AJ/Handout 09 -10 & Week-05                         Object Oriented Programming using Java (ECS-122) 

 

13  

 

Example #1: Write a class named “Student” with attributes name registration 

number, and marks and following functions: 

3. setStudent()    : to get values from user 

4. getStudent()    : print attributes – name, Registration number and marks 

Also write main function to call these functions. 

Solution: 

import java.util.Scanner; 

public class Student { 

    private String name; 

    private String regNo; 

    private float marks; 

 

    public void setStudent() { 

        Scanner s=new Scanner(System.in); 

        System.out.println("Enter name: "); 

        name=s.nextLine(); 

        System.out.println("Enter Registration No: "); 

        regNo=s.nextLine(); 

        System.out.println("Enter marks: "); 

        marks=s.nextFloat(); 

    } 

 

    public void getStudent() { 

        System.out.println(name+"\t\t"+regNo+"\t\t"+marks); 

    } 

} 

public class Main { 

    public static void main(String[] rgs) 

    { 

        Student s1=new Student(); 

        System.out.println("Enter Details of Student #1"); 

        s1.setStudent(); 

 

        Student s2=new Student(); 

        System.out.println("Enter Details of Student #2"); 

        s2.setStudent(); 

 

        Student s3=new Student(); 

        System.out.println("Enter Details of Student #3"); 

        s3.setStudent(); 

  

System.out.println("NAME\tREG#\tMARKS\n_______________________________"); 

s1.getStudent(); 

s2.getStudent(); 

s3.getStudent(); 

} 

} 

 

 

 



 

AJ/Handout 09 -10 & Week-05                         Object Oriented Programming using Java (ECS-122) 

 

14  

 

Example #2: Accessing member function outside the class: 

 

In this example we will discuss how to access private data members outside the class? Let’s suppose 

we want to print details of a student with maximum marks. Here we need marks property in main 

program, which is private and cannot be accessed with dot operator. So we need a member function 

that will return private value to calling object. See the following example code: 

import java.util.Scanner; 

public class Student { 

    private String name; 

    private String regNo; 

    private float marks; 

 

    public void setStudent() { 

        Scanner s=new Scanner(System.in); 

        System.out.println("Enter name: "); 

        name=s.nextLine(); 

        System.out.println("Enter Registration No: "); 

        regNo=s.nextLine(); 

        System.out.println("Enter marks: "); 

        marks=s.nextFloat(); 

    } 

 

    public void getStudent() { 

        System.out.println(name+"\t\t"+regNo+"\t\t"+marks); 

    } 

public float retMarks() 

{ 

    return marks; 

} 

 

} 

public class Main { 

    public static void main(String[] rgs) 

    { 

        Student s1=new Student(); 

        System.out.println("Enter Details of Student #1"); 

        s1.setStudent(); 

 

        Student s2=new Student(); 

        System.out.println("Enter Details of Student #2"); 

        s2.setStudent(); 

 

        Student s3=new Student(); 

        System.out.println("Enter Details of Student #3"); 

        s3.setStudent(); 

  

System.out.println("NAME\tREG#\tMARKS\n_______________________________"); 

s1.getStudent(); 

s2.getStudent(); 

s3.getStudent(); 

System.out.println("TOPER IS: \n "); 

if(s1.retMarks()>s2.retMarks() && s1.retMarks()> s3.retMarks()) 

Function to return 

private values 



 

AJ/Handout 09 -10 & Week-05                         Object Oriented Programming using Java (ECS-122) 

 

15  

 

    s1.getStudent(); 

else 

    if (s2.retMarks()>s1.retMarks()&& s2.retMarks()>s3.retMarks()) 

        s2.getStudent(); 

    else s3.getStudent(); 

 

} 

} 

 

In the above program 

 Student class is created. 

 In main three objects/ instances of student class has been created by using new operator 

 setStudent() method is called for each instance variable that will allow the user to input name, 

registration and marks of student 

 We have created retMarks() method to get private property,  As we cannot access private data 

of instance variables in main() or outside the class 

  retMarks() is called in main to get and compare marks of three instance variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

AJ/Handout 09 -10 & Week-05                         Object Oriented Programming using Java (ECS-122) 

 

16  

 

Assignment # 2 

 

Q#1:  Update student class (see example #2) by adding following data members and 

methods 

 RollNo (int) 

 Name (String) 

 Subject name (String) 

 Grade (char) 

 obtained marks (float)  

 input ( ): will input Rollno, Name, Subject Name, Obtained marks. 

 Calculate Grade ( ): Will calculate grade of student based on credit hours, total marks and 

obtained marks. Here this is assumed that grading criteria is known for you as followed in 

NU 

 printStudents (char grade) : Will print all those students whose grade matches the given 

grade as argument  

 

The Program should print the following information: 

1) Create at least 5 objects in main and get their values by calling required functions. 

2) calculate their grades based on their input values 

3) Display the information of student with highest marks 

4) Display all those students whose grade is A 

5) Print failure students (below d) 

 

Q#2:  Write a program to maintain the travelling of different travelers. The traveler class 

contains kilometers and hours travelled as data members and required function to get input and 

display travelling information. 

 

You are required to get travelling information of at least 5 travelers and display them in tabular 

view.  

 

Also display information of traveler who travelled maximum distance in minimum time. 

 

 

Q#3: You have a class “Distance” with feet and inches as data members and member 

functions as follows.  

 

1. getdistance() to get distance values 

2. showdistance() to print feet and inches  



 

AJ/Handout 09 -10 & Week-05                         Object Oriented Programming using Java (ECS-122) 

 

17  

 

 

 In main function you have to keep input from user and saved them in five variables/objects of 

type Distance. After completion of input, your program should display following information.  

 

 Shortest Distance   

 Longest Distance   

 TotalDistance   

 

 

 


	1. Objects Oriented Programming
	2. Core Concepts of Object Oriented Programming
	3. Class and Object
	4. Access Specifiers
	1. Object Oriented Programming (OOPS)?
	Object Oriented Programming is a programming concept that works on the principle that objects are the most important part of your program. It allows users create the objects that they want and then create methods to handle those objects. Manipulating ...
	Object Oriented Programming popularly known as OOP, is used in a modern programming language like Java.
	2. Core concepts of OOP:
	1. Class The class is a group of similar entities. It is only a logical component and not the physical entity. For example, if you had a class called “Expensive Cars” it could have objects like Mercedes, BMW, Toyota, etc. Its properties (data) can be ...
	2. Object
	An object can be defined as an instance of a class, and there can be multiple instances of a class in a program. An Object contains both the data and the function, which operates on the data. For example - chair, bike, marker, pen, table, car, etc.
	3. Inheritance
	Inheritance is an OOPS concept in which one object acquires the properties and behaviors of the parent object. It’s creating a parent-child relationship between two classes. It offers robust and natural mechanism for organizing and structure of any so...
	4. Polymorphism
	Polymorphism refers to the ability of a variable, object or function to take on multiple forms. For example, in English, the verb run has a different meaning if you use it with a laptop, a foot race, and business. Here, we understand the meaning of ru...
	5. Abstraction
	An abstraction is an act of representing essential features without including background details. It is a technique of creating a new data type that is suited for a specific application. For example, while driving a car, you do not have to be concerne...
	6. Encapsulation
	Encapsulation is an OOP technique of wrapping the data and code. In this OOPS concept, the variables of a class are always hidden from other classes. It can only be accessed using the methods of their current class. For example - in school, a student ...
	7. Association
	Association is a relationship between two objects. It defines the diversity between objects. In this OOP concept, all objects have their separate lifecycle, and there is no owner. For example, many students can associate with one teacher while one stu...
	8. Aggregation
	In this technique, all objects have their separate lifecycle. However, there is ownership such that child object can’t belong to another parent object. For example consider class/objects department and teacher. Here, a single teacher can’t belong to m...
	9. Composition
	A composition is a specialized form of Aggregation. It is also called "death" relationship. Child objects do not have their lifecycle so when parent object deletes all child object will also delete automatically. For that, let’s take an example of Hou...
	3. Advantages of OOPS:
	 OOP offers easy to understand and a clear modular structure for programs.
	 Objects created for Object-Oriented Programs can be reused in other programs. Thus it saves significant development cost.
	 Large programs are difficult to write, but if the development and designing team follow OOPS concept then they can better design with minimum flaws.
	 It also enhances program modularity because every object exists independently.
	4. Class and Objects
	4.1 Java Class
	4.1.1 How to define a class in Java?

	4.2. Java Objects
	5. How to access members?

	Example: Java Class and Objects

	Example #1: Write a class named “Student” with attributes name registration number, and marks and following functions:
	Assignment # 2

